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Accurate disturbance models are necessary to predict the e!ects of vibrations on the
performance of precision space-based telescopes, such as the Space Interferometry Mission
(SIM). There are many possible disturbance sources on such spacecraft, but mechanical jitter
from the reaction wheel assembly (RWA) is anticipated to be the largest. A method has been
developed and implemented in the form of a MATLAB toolbox to extract parameters for an
empirical disturbance model from RWA micro-vibration data. The disturbance model is
based on one that was used to predict the vibration behaviour of the Hubble Space
Telescope (HST) wheels and assumes that RWA disturbances consist of discrete harmonics
of the wheel speed with amplitudes proportional to the wheel speed squared. The MATLAB
toolbox allows the extension of this empirical disturbance model for application to any
reaction wheel given steady state vibration data. The toolbox functions are useful for
analyzing RWA vibration data, and the model provides a good estimate of the disturbances
over most wheel speeds. However, it is shown that the disturbances are under-predicted by
a model of this form over some wheel speed ranges. The poor correlation is due to the fact
that the empirical model does not account for disturbance ampli"cations caused by
interactions between the harmonics and the structural modes of the wheel. Experimental
data from an ITHACO Space Systems E-type reaction wheel are used to illustrate the model
development and validation process.

( 2002 Academic Press
1. INTRODUCTION

NASA's Origins program is a series of missions planned for launch in the early part of the
21st century that is designed to search for Earth-like planets capable of sustaining life and to
answer questions regarding the origin of the universe. The "rst-generation missions include
the Space Interferometry Mission (SIM), a space-based interferometer with astrometry
and imaging capabilities [1], and the Next-Generation Space Telescope (NGST),
0022-460X/02/030575#24 $35.00/0 ( 2002 Academic Press
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a near-infrared telescope.s These telescopes will employ new technologies to achieve large
improvements in angular resolution and image quality and to meet the goals of high
resolution and high-sensitivity imaging and astrometry [2]. The ability of these missions to
accomplish their objectives will depend heavily on their structural dynamic behavior.

SIM and NGST pose challenging problems in the areas of structural dynamics and
control since both instruments are large, #exible, deployed structures with precise stability
requirements. The optical elements on SIM must meet positional tolerances of the order of
1 nm across the entire 10 m baseline of the structure to achieve astrometry requirements [3],
and those on NGST must be aligned within a fraction of a wavelength to meet optimal
observation requirements [4]. Disturbances from both the orbital environment and
on-board mechanical systems and sensors are expected to impinge on the structure causing
vibrations that can introduce jitter in the optical train and render the system unable to meet
performance requirements. It is expected that the largest disturbances will be generated
on-board and will be dominated by vibrations from the reaction wheel assembly
(RWA) [3].

1.1. REACTION WHEEL ASSEMBLY

When maneuvering on orbit, spacecraft generally require an external force, or torque,
that is sometimes provided by thrusters. As an alternative, RWA can counteract zero-mean
torques on the spacecraft without the consumption of precious fuel and can store
momentum induced by very low frequency or DC torques [5]. They are often used for both
spacecraft attitude control [6] and large angle slewing maneuvers [7]. Other applications
include vibration compensation and orientation control of solar arrays [8]. A typical RWA
consists of a rotating #ywheel suspended on ball bearings encased in a housing and driven
by an internal brushless DC motor. Alternative RWA designs include the use of magnetic
bearings to replace traditional ball bearings [9, 10].

During the manufacturing process, RWAs are balanced to minimize the vibrations that
occur during operation. However, it has been found that the vibration forces and torques
emitted by the RWA can still degrade the performance of precision instruments in space
[7, 11}14]. In general, the RWA disturbance environment is driven by #ywheel imbalance
and bearing irregularities. Flywheel imbalance is the largest disturbance source in the RWA
and induces a disturbance force and torque at the rate of rotation. There are two types of
#ywheel imbalances, static and dynamic. Static imbalance results from the o!set of the
center of mass of the wheel from its spin axis, and dynamic imbalance is caused by the
misalignment of the wheel's principal axis and the axis of rotation [15]. Bearing
disturbances, which are caused by irregularities in the balls, races, and/or cage [16],
produce disturbances at both sub- and super-harmonics of the wheel's spin rate. In
addition, lubricant dynamics can induce low-frequency disturbances and torque ripple and
cogging in the brushless DC motor can generate very high-frequency disturbances [15].

1.2. DISTURBANCE MODELLING

Isolation systems have been used to reduce the e!ects of RWA disturbances on spacecraft
requiring high levels of stability [7, 11, 13, 17]. Models of RWA-induced disturbances are
generated for use in jitter analysis to predict the e!ects of the vibrations on the spacecraft
ssee Origins website: http://origins.jpl.nasa.gov
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and allow the development of suitable control and isolation techniques. One such
disturbance model was developed to predict the e!ects of RWA-induced vibrations on the
Hubble Space Telescope (HST) [14]. The model is based on induced vibration testing
performed on the HST #ight wheels and assumes that the disturbances are a series of
harmonics at discrete frequencies with amplitudes proportional to the wheel speed squared.
The model is "t to the vibration data and provides a prediction of the disturbances at
a given wheel speed. However, during operation it is often necessary to run the RWAs at a
range of speeds. Therefore, this discrete frequency model was later used to create
a stochastic broad-band model that predicts the power spectral density (PSD) of RWA
disturbances over a given range of wheel speeds [17]. The stochastic model assumes that
wheel speed is a random variable with a given probability density function. Both the
discrete frequency and stochastic models capture the disturbances of a single RWA.
However, in application, multiple RWAs are used to provide multi-axis torques to the
spacecraft and for redundancy. Therefore, a multiple-wheel model was developed which
predicts the disturbance environment of multiple RWAs in a speci"ed orientation based on
a frequency domain disturbance model of a single wheel [4, 18]. In e!ect, the RWA
disturbances from a frame attached to the RWA to the general spacecraft frame simplify the
disturbance analysis.

The focus of this paper is the development of an empirical RWA disturbance model for
incorporation into a performance assessment and enhancement framework developed by
Gutierrez in reference [18]. In this framework, a disturbance model is used to drive a model
of the spacecraft, or plant. Then performance outputs are compared against the
requirements to assess the spacecraft/controller design. The development of the disturbance
model is an important part of this process since the accuracy of the results obtained from
the methodology depends heavily on the quality of the disturbance model. The performance
assessment process is especially important for the next-generation telescopes, such as SIM
and NGST, due to their stringent requirements. Since the RWA are expected to be the most
signi"cant source of jitter great care has been taken to develop an accurate RWA
disturbance model. The model presented in this paper is based on the HST model, but is
extended for application to any RWA through the development of a MATLAB toolbox that
extracts the model parameters from steady state RWA vibration data. The empirical model
can be represented in either the time or the frequency domain, and is most useful when used
in combination with other RWA disturbance models, such as the stochastic model or the
multiple wheel models described above.

2. EMPIRICAL MODEL

The Hubble Space Telescope (HST) requires high pointing accuracy and mechanical
stability for the acquisition of science data. Therefore, characterization of RWA vibrations
was important in the early stages of spacecraft design to allow prediction of performance
degradation due to the operation of the wheels. To accomplish this goal, the HST RWA
#ight units were subject to a series of induced vibration tests. The results of these tests
indicated that RWA disturbances are tonal in nature; i.e., the disturbance frequencies are
a linear function of wheel speed [14]. Based on the data and the physics of a rotating
imbalanced mass, the RWA disturbances are modelled as a series of discrete harmonics at
frequencies that vary linearly with wheel speed and with amplitudes proportional to the
wheel speed squared:

m(t)"
n
+
i/1

C
i
X2 sin (2nh

i
Xt#a

i
), (1)



578 R. A. MASTERSON E¹ A¸.
where m(t) is the disturbance force or torque, n is the number of harmonics included in the
model, C

i
is the amplitude coe$cient of the ith harmonic, X is the wheel speed, h

i
is the ith

harmonic number and a
i
is a random phase (assumed to be uniform over [0, 2n]) [17]. The

harmonic numbers are non-dimensional frequency ratios that describe the relationship
between the ith disturbance frequency, u6

i
and the spin rate of the wheel, X:

h
i
"

u6
i

X
. (2)

Note that this model (equation (1)) yields disturbance forces and torques as a function of the
wheel speed. It is a steady state model only; transient e!ects induced from changing wheel
speeds are not considered.

The model parameters, h
i
, C

i
and n, are wheel dependent. As discussed previously, the two

sources of RWA disturbances are #ywheel imbalance and bearing imperfections. RWAs
made by di!erent manufacturers will not have the same designs and speci"cations. As
a result, each wheel induces a unique set of disturbances. For example, a large wheel, that
can provide high reaction torque, may produce larger amplitude disturbances than an
RWA with a smaller #ywheel. Also, #ywheel imbalance and bearing imperfections are
clearly not part of the RWA design. These anomalies occur during the manufacturing
process and are di$cult to control during operation. Therefore, each RWA has its own
characteristic set of harmonic numbers and amplitude coe$cients. As a result, in order to
properly model a given wheel, it is necessary to perform vibration tests on the unit. Then,
the model parameters can be determined empirically from the test data. To facilitate the
parameter extraction process, a MATLAB toolbox that analyzes steady state RWA
disturbance data and determines the harmonic numbers and amplitude coe$cients for
a model of the form described by equation (1) has been developed. The following sections
present the formulation of such an empirical RWA model by "rst describing the algorithms
used in the MATLAB functions and then illustrating the parameter extraction tools and
validating the model using micro-vibration data from an ITHACO Space Systems E-type
wheel.

3. RWA VIBRATION TESTING-ITHACO E WHEEL

An ITHACO Space Systems E-type wheel, model TW-50E300, was tested at the NASA
Goddard Space Flight Center (GSFC). The wheel was integrated into a sti! cylindrical test
"xture and hard-mounted to a Kistler force/torque table. The orientation of the wheel
during the test was such that F

x
and F

y
are the radial forces, ¹

x
and ¹

y
are the radial torques,

and F
z

and ¹
z
are the axial forces and torques respectively (see Figure 1). The wheel was

started at 0 r.p.m. and full torque voltage was applied to the motor until the wheel saturated
around 2400 r.p.m. The data were sampled at 3840 Hz for 390 s and eight channels of data
corresponding to 12 load cell axes were obtained. The orientations of the load cell axes are
shown in Figure 1. These channels were combined to derive the disturbance forces and
torques at the mounting interface between the wheel and the table (frame OXYZ in
Figure 1). Note that although the vibration test was not conducted at steady state speeds,
the time history can be subdivided into quasi-steady state time slices [19]. The continuous
spin-up data were therefore transformed into 120 separate time histories and the average
wheel speed for each slice was calculated.

The frequency content of the wheel disturbances can be best visualized by transforming
the time histories to power spectral densities (PSDs) and creating a three-dimensional plot



Figure 1. Schematic of Kistler force/torque table setup. Data from the four 3-axis load cells are combined to
calculate the force/torque disturbances at the wheel interface in the OXYZ frame.
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known as waterfall plot. An example of such a plot is shown in Figure 2(a). The average
wheel speeds of the time histories are plotted along the x-axis. The frequency of the signals
and the magnitude of the PSDs are shown along the y- and z-axis respectively. Taking
a slice of the y}z plane of a waterfall plot results in the PSD of the RWA disturbances at a
single wheel speed. Plotting the data in this form allows the identi"cation of disturbance
trends across both frequency and wheel speed. The waterfall plots of the six disturbance
PSDs from the ITHACO Space Systems E-type wheel are shown in Figure 2. Note that
diagonal ridges of disturbances in the x}y plane are visible in the data. The frequencies of
these disturbances are linearly dependent on the wheel speed; as the speed of the wheel
increases the disturbances slide along the frequency axis. These disturbances are the wheel
harmonics. The fundamental harmonic is the largest of these disturbance ridges and is
clearly visible in the radial forces and torques and the axial force. The smaller diagonal
ridges are the super-harmonics caused by bearing imperfections and other disturbance
sources within the RWA.

In addition to the diagonal ridges there are regions of disturbance ampli"cation visible
between 200 and 250 Hz in the "rst "ve waterfall plots. These disturbance ampli"cations
form ridges in the x}y plane which are parallel to the y-axis; they are independent of the
wheel speed. The frequency content suggests that these disturbances are due to structural
modes in the wheel and/or test stand apparatus. However, given the geometry and design of
the test "xture, its lowest mode is estimated to be greater than 300 Hz. Therefore, it can be
concluded that disturbance ampli"cations below this frequency are due to structural modes
of the RWA. A discussion of this component of the RWA disturbance environment is
beyond the scope of this paper and will be addressed in a future publication.

The two radial force plots, Figures 2(a) and 2(b), show that the number and shape of the
harmonics visible in these disturbances are similar. The same observation can be made with
regard to the radial torques, Figures 2(c) and 2(d). This similarity is expected because the
wheel is axisymmetric and therefore the radial forces/torques should di!er only by 903 of
phase. Therefore, the PSDs look nearly identical since no phase information is retained
when the time histories are transformed to the frequency domain. The axial disturbance
torque is not considered since the z-axis is the spin axis of the wheel, and the disturbance
torque about this axis is negligible compared to the commanded torque.

4. EMPIRICAL DISTURBANCE MODELLING METHODOLOGY

The RWA Data Analysis and Disturbance Modelling (DADM) toolbox creates steady
state disturbance models of the form shown in equation (1) from steady state reaction wheel



Figure 2. RWA disturbance data*ITHACO E-type wheel: (a) radial force, x direction; (b) radial force,
y direction; (c) radial torque, x direction; (d) radial torque, y direction; (e) axial force, z direction.
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disturbance data. The analysis tools extract the model parameters, h
i

and C
i
, from

frequency domain data and generate plots for model validation. In this section, the data
analysis and disturbance modelling process is discussed in detail using the development of
a radial force disturbance model from the ITHACO Space Systems E-type wheel F

x
and

F
y

data as an example.

4.1. OVERVIEW

Typical test results from one wheel include data for "ve disturbances: three forces (F
x
, F

y
,

F
z
) and two torques (¹

x
, ¹

y
). Assuming the z-axis is the spin axis of the wheel, the F

x
and

F
y
data are both radial force disturbances and are used in combination to create the radial

force disturbance model. The use of both data sets should result in better correlation
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between the model and the data since the number of data points in the sample space is
doubled. Similarly, ¹

x
and ¹

y
are both radial torque data, and are used to create the radial

torque model. The axial force disturbance model is created from the F
z
, or axial force, data.

The RWA DADM process requires that experimental data from a given wheel be
processed and stored in "ve data sets, one for each of the relevant disturbances, that include
both the PSDs, S, and amplitude spectra, A, of the measured disturbances, the wheel speeds
at which the data were taken, X, a frequency vector corresponding to the frequency domain
data, f, and the upper frequency limit of good data, f

Lim
. Both S and A are row vectors of

frequency domain data arranged such that the jth column corresponds to the PSD (or
amplitude spectra) of the disturbance taken at the jth wheel speed, i.e., S"[S

12
S
m
]. The

upper frequency limit is determined by the frequency at which the data were sampled or the
frequency of the "rst test stand mode. It is only desirable to use data that are not corrupted
by test "xture dynamics. Therefore, if a test stand mode exists below the Nyquist frequency,
f
Lim

should be set at a frequency signi"cantly lower than the test stand resonance. Otherwise,
f
Lim

is simply the Nyquist frequency.
The methodologies used to create the three disturbance models, radial force, radial

torque and axial force, are quite similar. Therefore, only an overview of the radial forces will
be given. Figure 3 summarizes the modelling procedure and should be referred to
throughout the following discussion. In the initial stages of the analysis process, the F

x
and

F
y
data sets are run through the algorithms separately, and a "rst generation of harmonic

numbers, (h
Fx

)
1

and (h
Fy

)
1
, are obtained from each data set. These quantities are then used

to calculate the corresponding "rst generation of amplitude coe$cients, (C
Fx

)
1

and (C
Fy
)
1
.

These parameters yield a model that can be compared with the experimental data. If the
model comparison shows that there are extraneous harmonics in the model that are not
validated by the data or that harmonics that are clearly visible in the data are not present in
the model then the list of harmonic numbers is re"ned and the parameter extraction process
is repeated. Additional iterations are performed on either data set (or both) until the
harmonic numbers, h

Fx
and h

Fy
, match the experimental data to the user's satisfaction.

At this point in the analysis process the harmonic numbers, h
Fx

and h
Fy

, are combined to
create a set of radial harmonic numbers, h

rad
. If a number is found in both lists (or if two

numbers are close to each other) their average is included in h
rad

. Otherwise, h
rad

is simply
the union of h

Fx
and h

Fy
. Once h

rad
has been determined it is used along with both the

F
x

and F
y

data sets to calculate the amplitude coe$cients for the radial disturbance
model, C

rad
.

The amplitude coe$cients are then validated with curve "t plots. If disturbance
ampli"cations resulting from interactions between the structural wheel modes and
harmonics are visible in the curve "ts, the coe$cients are run through an algorithm that
removes these resonant e!ects. Finally, one more model/data comparison is performed as
a "nal check. The radial model parameters should "t both the F

x
and F

y
data sets well. The

radial force disturbance modelling procedure is described in detail in the following sections
using the ITHACO Space Systems E-type wheel F

x
data set as an example. The inputs and

tolerances used to create this particular wheel model are listed in Table 1.

4.2. IDENTIFYING HARMONIC NUMBERS

The "rst step in the empirical modelling process is the extraction of the harmonic
numbers, h

i
, from the experimental data. An algorithm that individually examines all the

amplitude spectra in a data set and locates peaks that are due to the wheel harmonics
has been developed and implemented in MATLAB. Figure 4 presents a graphical



Figure 3. RWA data analysis process for radial force disturbance.
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representation of the harmonic number identi"cation algorithm and is referred to
throughout the following discussion.

First, the frequencies, f, are normalized by dividing the elements of the frequency vector
by each of the speeds (in revolutions per second, r.p.s.) in the wheel speed vector, X. The
result is m vectors of non-dimensional frequency ratios (where m is the total number of
wheel speeds), f *

j
, each corresponding to one wheel speed, X

j
. Figure 5 demonstrates the

normalization using the ITHACO Space Systems E-type wheel F
x

data at X"2000



TABLE 1

Inputs for I¹HACO E-type wheel radial force modelling

Name Description Size/value

m No. of wheel speeds 120
n
f

No. of frequency points 640
f Frequency vector 640]1

f
Lim

Upper frequency limit 300 (Hz)
X

Fx
F
x

data wheel speeds 1]120
X

Fy
F
y
data wheel speeds 1]120

A
Fx

F
x

amplitude spectra 640]120
A

Fy
F
y
amplitude spectra 640]120

S
Fx

F
x

PSDs 640]120
S
Fy

F
y
PSDs 640]120

Np Noise isolation tolerance 2
e Binning tolerance 0)02
P
0

Bin percentage threshold 25%

Figure 4. Harmonic number identi"cation algorithm with detail of ,nd disturbance peaks block.
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revolutions per minute, r.p.m. (or 33)33 r.p.s.). In the upper plot, the amplitude spectrum, A,
is plotted versus frequency. In the lower plot the same data are plotted as a function of the
normalized frequency, f *. Note that the largest peak in the amplitude spectra occurs at
f *"1)0. This peak is caused by the fundamental harmonic disturbance (h

i
"1).

The next step in the algorithm is to identify the normalized frequencies of the disturbance
peaks in the amplitude spectra as indicated by the block labelled ,nd disturbance peaks in
Figure 4. The "gure contains an exploded view of the block showing the disturbance peak
identi"cation process for one set of amplitude spectra and normalized frequencies. Note
that within the main algorithm this process is executed m times. First, all the peaks in the
amplitude spectra are identi"ed by di!erencing A

j
and locating sign changes in the



Figure 5. Frequency normalization of ITHACO E-type wheel F
x

data (2000 r.p.m.): (a) amplitude spectrum
versus frequency; (b) amplitude spectrum versus normalized frequency.
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di!erenced data. The quantities f *
jpeak

and A
jpeak

are the normalized peak frequencies and
amplitudes respectively. For example, each peak identi"ed in ITHACO Space Systems
E-type wheel amplitude spectra A at X"2000 r.p.m. is shown in Figure 6(a) marked with
an &&x''. Note that all of the peaks in the data are marked. It is highly unlikely that all of these
peaks are a result of harmonic disturbances. Some may be due to noise or may be a result of
taking the FFT of the time history data. Therefore, a method was developed to discriminate
between disturbance peaks and noise peaks.

Noise is isolated from the disturbance harmonics in the block labelled noise analysis. The
MATLAB histogram function is used to bin the elements of A

jpeak
according to amplitude.

Assuming that the noise peaks are all of roughly the same amplitude and account for
the largest bin in the histogram allows a disturbance amplitude threshold, D¹, to
be determined. All spike amplitudes that fall in or below the largest histogram bin are
considered noise. The remaining spikes are considered possible harmonic disturbances. See
Figure 6(b) for an example. The disturbance amplitude threshold is then de"ned as

D¹"k
noise

#Nppnoise
, (3)

where k
noise

and p
noise

are the mean and standard deviation of the spike amplitudes
identi"ed by the histogram. The parameter Np is a user-de"ned tolerance level. Its default
value is 3, but can be adjusted according to the signal-to-noise ratio of the data. The
ITHACO Space Systems E-type wheel data, for example, were sampled at a relatively high
frequency (3840 Hz) and for a long time. Therefore, a small frequency resolution and good
signal-to-noise ratio were obtained, which allows the use of a lower noise isolation
tolerance, Np"2.

All peaks with an amplitude below the disturbance amplitude threshold are not included
in the "nal vector of disturbance peaks. This part of the algorithm is represented in the
diagram by the block labelled disturbance peak isolation. The "nal outputs of the ,nd
disturbance peaks algorithm are a vector of normalized disturbance peak frequencies,



Figure 6. Disturbance peak identi"cation in ITHACO E-type wheel F
x
data (2000 r.p.m.): (a) peak identi"cation

with Np"3: *, all peaks (1st iteration); s, disturbance peaks (2nd iteration); (b) noise isolation histogram,
k"0)0059, d"0)0035.
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f *
jdist

and a vector of disturbance peak amplitudes, A
jdist

. The results of running the ITHACO
Space Systems E-type wheel data through the function are shown in Figure 6(a).
The disturbance threshold is indicated by the horizontal line, and the dark circles indicate
the disturbance peaks. Note that the majority of the smaller noise peaks lie below the
disturbance threshold. Once the disturbance peaks are identi"ed in all m sets of amplitude
spectra and normalized frequency vectors a matrix of normalized peak frequencies, F

peak
,

with each column corresponding to a di!erent wheel speed, is built. This matrix is used to
identify the harmonic numbers.

A true harmonic disturbance should occur at the same normalized frequency over all
wheel speeds. Therefore, a binning algorithm is used to search F

peak
for matching

frequencies across wheel speeds. Initially, the "rst column of the matrix is used as the
baseline case, f *

base
. The "rst entry in the baseline column is denoted the &&test entry'', f *

0
, and

placed into a bin. All of the other columns are then searched for normalized frequencies, f *,
that are within $e of the test entry (where e is a user-de"ned tolerance):

f *
0
!e)f *)f *

0
#e. (4)

All f * satisfying equation (4) are placed into the bin with f *
0

and their locations in F
peak

are
set to zero. If two or more normalized frequencies in the same column satisfy equation (4)
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their average is placed in the bin, and both entries are set to zero. Averaging ensures that
a possible harmonic will only be accounted for once at each wheel speed. When the entire
matrix has been searched, the second element of f*

base
becomes the test entry and a new bin is

created. The process continues until all elements of f *
base

have been considered. At this point,
the second column becomes f *

base
and the search is repeated. The algorithm continues in this

manner until all non-zero elements of F
peak

are binned. The results of the binning algorithm
are a matrix of the binned normalized frequencies, F

bin
(with the kth column corresponding

to the kth bin) and a second matrix containing the statistics for each bin, F
stat

. The "rst row
of F

stat
is the average, or center, of the bins, fM *

bink
, and the second row contains the number of

elements in the bins, N
bink

.
In the "nal block of Figure 4 the harmonic numbers are chosen from F

stat
. A metric, P

k
,

is de"ned as the percentage of possible wheel speeds in which a given normalized peak
frequency was found:

P
k
"

N
bink

N
possk

100%, (5)

where N
possk

is the total possible number of elements in the kth bin. In general, N
possk

should
be equal to the number of wheel speeds in the data set. However, this assumption does not
always hold due to the frequency range of the data set. The value of f

Lim
may limit the

number of wheel speeds in which a given normalized peak frequency is visible. For example,
as mentioned earlier, the E Wheel is free of corruption by test stand dynamics in the range
[0, 300] Hz. Any data above 300 Hz is not used in the modelling process. The normalized
frequency 1)0 corresponds to 8)3 Hz when the wheel is spinning at 500 r.p.m. and to 56)7 Hz
at 3400 r.p.m. Since both frequencies lie within the frequency range [0, 300] a disturbance at
f *"1)0 can be observed at all wheel speeds. The normalized frequency 5)98, on the other
hand, corresponds to 49)8 Hz at 500 r.p.m. and 339 Hz at 3400 r.p.m. In this case, f * lies
within the speci"ed frequency range for only a subset of the wheel speeds. The value of
N

possk
is therefore not the same over all k bins.

The metric P
k
can be considered a measure of the strength of a disturbance across wheel

speeds, and is used to identify wheel harmonics from the list of bin centers, fM *
bink

in F
stat

. If
P
k
is greater than a user-de"ned threshold, P

0
, then fM *

bink
is de"ned to be a harmonic number

and placed into a new vector, h. The outputs of the harmonic number identi"cation
algorithm are this vector of harmonic numbers, h, and the matrix of normalized disturbance
peak frequencies, F

peak
. Both outputs are necessary for the next step of the modelling

process.
To create a complete wheel model, the harmonic number identi"cation process described

above is performed on the three force and two torque disturbances. Then, the radial force
and radial torque model harmonic numbers, h

rad
and h

tor
, are determined by comparing and

combining the harmonic numbers extracted from the F
x
and F

y
data and the ¹

x
and ¹

y
data

respectively. The axial force harmonic numbers, h
axi

, are the harmonic numbers extracted
from the F

z
data.

4.3. CALCULATING AMPLITUDE COEFFICIENTS

The next step in the empirical modelling process is the extraction of the amplitude
coe$cients, C

i
, from the experimental data. Figure 7 presents a graphical representation of

the algorithm used to calculate the amplitude coe$cients given a steady state RWA data
set, the harmonic numbers, h, and matrix of normalized disturbance peak frequencies, F

peak
.



Figure 7. Amplitude coe$cient calculation algorithm.
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The block diagram details the process for one harmonic and its corresponding amplitude
coe$cient. In practice, the algorithm is repeated for each harmonic in the model.

Least-squares approximation methods are used to calculate the amplitude coe$cients for
the HST RWA disturbance model [14]. The magnitude of the disturbance force (or torque)
is assumed to be related to the wheel speed as

dI
ij
"K

i
X2

j
, (6)

where dI
ij

is the expected disturbance force (or torque) at the frequency corresponding to the
ith harmonic at the jth wheel speed and K

i
is a constant. The error between the actual

disturbance and the expected disturbance at the ith harmonic and the jth wheel speed, e
ij

is
then

e
ij
"d

ij
!K

i
X2

j
, (7)

where d
ij

is the experimentally measured disturbance force at the ith harmonic and jth wheel
speed. The amplitude coe$cient, C

i
, is de"ned as the value of K

i
that minimizes this error.

An expression for C
i
is obtained by squaring equation (7), summing over the wheel speeds

and solving for the K
i
that minimizes the squared error, e2

ij
:

C
i
"

+m
j/1

d
ij
X2

j
+m

j/1
X4

j

. (8)

Recall that during the initial stages of the radial force/torque modelling procedure the
coe$cients are calculated from a single data set, but the "nal model coe$cients are
calculated using two data sets (see Figure 3). The RWA DADM algorithm uses equation (8)
to compute the coe$cients for either the single or double data set case as shown in Figure 7.
In the following discussion, multiple data set extraction of radial force amplitude
coe$cients from the ITHACO Space Systems E-type wheel F

x
and F

y
data will be used as an

example.
The "rst block in Figure 7 represents the normalization of the frequency vector, f. The

resulting non-dimensional frequency vectors, Mf *
1 2f *

m
N are used along with A, F

peak
, X and

h to determine the disturbance forces, d
ij
, at each harmonic number over all wheel speeds. It

is important to note that a disturbance at the ith harmonic may not be visible in all of the
amplitude spectra in the data set. A disturbance peak can be undetectable for one of two
reasons. If the frequency corresponding to h

i
for a given wheel speed, X

j
, is not within the

frequency range of good data, [0, f
Lim

], the disturbance amplitude at this frequency may be
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corrupted and is not included in the calculation of the amplitude coe$cient. In addition, not
all disturbances that fall within the frequency range are visible at all wheel speeds. For
example, disturbances are often more di$cult to identify in data taken at low wheel speeds
due to a low signal-to-noise ratio. Therefore, the data must meet certain peak detection
conditions to be included in the calculation of C

i
.

Recall that both the matrix of amplitude spectra, A, and F
peak

contain m columns, each
corresponding to one wheel speed. De"ning the quantity D

j
which contains the amplitude

spectra, wheel speed, normalized frequency vector, normalized peak locations, and upper
frequency limit of good data associated with one wheel speed, D

j
(A

j
, f *

j
, F

peakj
, X

j
, f

Lim
)

allows the peak detection conditions to be written as

D
j
"M0(h

i
X

j
)f

Lim
NWM f *3F

peakj
Dh

i
!e)f *)h

i
#eN. (9)

The "rst condition in equation (9) ensures that the frequency corresponding to the
harmonic for X

j
is within the frequency range of good data. The second condition uses the

matrix of detected normalized peak frequencies, F
peak

, obtained from the harmonic number
identi"cation algorithm to ensure that a disturbance peak at f *"h

i
is detectable in the

amplitude spectra.
The extraction of disturbance amplitudes for use in the amplitude coe$cient calculation

is done one wheel speed at a time. The amplitude spectrum provides an estimation of the
signal amplitude over frequency. Therefore, if D

j
satis"es both of the above conditions the

magnitude of the disturbance force/torque at the frequency corresponding to the ith
harmonic is simply the value of A

j
at the normalized frequency f *"h

i
. The disturbance

magnitude is assigned to d
ij
, and the wheel speed is assigned to XI

ij
. However, if one or both

of the conditions are not satis"ed, the data for that wheel speed is not included in the
calculation and both d

ij
and XI

ij
are set to zero. This process is continued for all wheel

speeds, until two vectors of length m, one of disturbance amplitudes, D
i
, and one of

corresponding wheel speeds, XI
i
, are created. In general, XI

i
would be equal to the input

vector X, but since all of the wheel speeds may not be included in the amplitude coe$cient
calculation for a given harmonic due to lack of disturbance peak visibility, each C

i
is

computed using a distinct subset of wheel speeds, XI
i
. The vectors D

i
and XI

i
are manipulated

and summed as shown in equation (8) to obtain C
i
.

Curve-"t plots are useful for both removing harmonics from the model and assessing the
quality of the "t between the data and the disturbance force predicted by C

i
. The plots for

the 1)0 and 4)42 harmonics of the ITHACO Space Systems E-type wheel data (F
x
and F

y
) are

shown in Figure 8. The circles represent the disturbance amplitudes of the experimental
data over the di!erent wheel speeds, D

i
. Note that some of the circles lie on the x-axis. These

points are from wheel speeds which did not meet the conditions in equation (9). The solid
line is the curve generated using the calculated C

i
and equation (6).

Notice in the curve "t plot for h
1
"1)0 that the data points are not distributed evenly

across wheel speeds, but are clustered at high wheel speeds. Recall that when the vibration
tests were conducted, full torque was applied to the wheel and it was allowed to spin up
until it reached saturation around 2300 r.p.m. As a result, a large portion of the data was
taken while the wheel was saturated at its maximum speed. Therefore, when the data were
processed into quasi-steady state data sets, the highest wheel speed was represented
multiple times in the wheel speed vector and frequency domain data matrices. The
algorithm used to calculate the amplitude coe$cients ensures that the uneven wheel speed
distribution does not result in an unequal weighting of the data points when the amplitude
coe$cient is calculated. If a data point from a given wheel speed is included more than once
in the vector D

i
, the wheel speed is also included an equal number of times in XI

i
.



Figure 8. Amplitude coe$cient curve "ts for ITHACO E-type wheel radial force data: (a) h
1
"1)0; (b) h

5
"4)42;

**, model; s, data.
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If a curve "t is not based on enough data points there cannot be a high degree of
con"dence in the resulting amplitude coe$cient, and the harmonics are removed from the
model. The data from the high wheel speeds could not be included in the curve "t because
the frequencies corresponding to this harmonic are not within the frequency range of good
data. Therefore, it is often di$cult to predict the amplitude coe$cients for the higher
harmonics.

In addition, the curve "ts allow assessment of the validity of the assumption that the
disturbance amplitudes are related to the wheel speed squared (equation (6)). In Figure 8(a),
the data points lay right along the theoretical curve. This result suggests that the
assumption of equation (6) holds for the fundamental harmonic. In contrast, the curve "t for
h
5
"4)42, Figure 8(b), is not quite as good. The curve follows the general trend of the data,

but the points do not lie along the predicted line. The same is true for all harmonics except
the fundamental. Equation (6) can be derived by considering the physics of a statically and
dynamically imbalanced rotating mass. The fundamental harmonics is the result of exactly
this situation whereas the other harmonics are due to bearing imperfections and other
e!ects that are more di$cult to model physically. Therefore, it makes sense that the wheel
speed squared law does not necessarily hold for the sub- and super-harmonics.

Figure 8(b) also shows large disturbance ampli"cations in the form of resonant peaks at
both 1000 and 2000 r.p.m. These ampli"cations occur when the frequency of the harmonic
approaches the frequency of one of the structural wheel modes. The form of the empirical
model does not present a convenient method to account for these modal excitations.
Therefore, the empirical model will be used to model only the wheel harmonics. As a result,
the modal interactions seen in the "gure should not be included in the calculation of the
amplitude coe$cient. The structural modes and the disturbance ampli"cations are
incorporated into a second RWA model which is the subject of a future publication.

An algorithm was developed that isolates the e!ects of the structural mode from the
harmonic disturbances and is shown in a block-diagram representation in Figure 9. The
outputs from the original amplitude coe$cients calculation are denoted CM

i
and D1

i
to

di!erentiate between coe$cients calculated with and without modal e!ects. These
quantities are input to the algorithm along with X, the harmonic index, i, and the wheel
speed range a!ected by the structural mode, [X

l
, X

u
]. For example, consider the third

harmonic of the ITHACO Space Systems E-type wheel radial torque model (h
7
"5)57)

shown in Figure 10. The lighter circles and dashed curve are the initial results of the
amplitude coe$cient calculation.



Figure 9. Structural mode isolation algorithm.

Figure 10. E!ects of internal wheel modes on amplitude coe$cient curve "t; h
7
"5)57 (ITHACO E-type wheel

radial force): s, with modal e!ects, C
7
"1)73]10~8; x, w/o modal e!ects, C

7
"0)69]10~8.
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Note that there is a large increase in force amplitude in the data around 2300 r.p.m. The
resonant e!ect of the structural mode is removed from the amplitude coe$cient calculation
by removing the data points associated with speeds in the a!ected range from D1

i
. Then,

a new disturbance magnitude vector, D
i
, and corresponding wheel speed vector, XI

i
are

created and used to calculate the corrected amplitude coe$cient, C
i
.

The resulting curve "t without the modal e!ects included is also shown in Figure 10. The
dark x's and the solid curve correspond to D

7
and C

7
and do not include the resonance

points, while the lighter circles and dashed curve correspond to the original coe$cient
calculation based on all points, D1

7
and C1

7
. Note that including data with the resonance

behavior causes an over-estimation of the disturbance force over all wheel speeds (dashed
curve). When the resonant data are removed from the coe$cient calculation (solid curve)
the amplitude coe$cient is decreased by 60% and there is a much better "t between the
theoretical curve and the data between 1500 and 2000 r.p.m.

Seven harmonics have been identi"ed for the ITHACO Space Systems E-type wheel
radial force disturbance model with the analysis toolbox. A harmonic at h

i
"5)00 and those

greater than 5)57 are eliminated from the model due to low-con"dence amplitude coe$cient
curve "ts. In most of these cases, the only signi"cant peaks are a result of disturbance



TABLE 2

Disturbance ampli,cation in radial force harmonics

Wheel speed Ampli"cation CM
i
]107 C

i
]107

h
i

range (r.p.m.) source (N/r.p.m.2) (N/r.p.m.2)

1)0 1900}2000 Radial rocking (negative whirl) 0)4200 0)4155
800}1300 Radial rocking (negative whirl)

2)0 0)0846 0)0832
2200# Unknown

3)0 1800}2000 Radial rocking (positive whirl) 0)0734 0)0543
1150}1400 Radial rocking (positive whirl)

4)0 0)0629 0)0621
2100# Unknown
900}1100 Radial rocking (positive whirl)

4)42 0)1188 0)1100
1800}2150 Unknown

5)37 2200# Radial translation 0)0780 0)0524
5)57 2200# Radial translation 0)1729 0)0690

Figure 11. Waterfall comparison of radial force model and ITHACO E-type wheel F
x

data showing modal
excitation.
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ampli"cation by structural modes. Once the a!ected points are removed from the
calculation there are not enough data left to accurately predict the amplitude coe$cient.
The fact that these harmonics can not be observed at low wheel speeds indicates that the
disturbances at these frequencies are most likely small relative to the identi"ed harmonics.
Therefore, their omission from the model should not have a large e!ect on the degree of
correlation between the model and the data.

Table 2 lists the a!ected speed ranges, probable ampli"cation sources and amplitude
coe$cients (with and without ampli"cation) for each of the a!ected harmonics in the
ITHACO Space Systems E-type wheel data. The ampli"cation source was determined by
examining the waterfall plot comparison of the radial force data and model, Figure 11. In
this plot, the frequencies of the radial structural wheel modes are labelled and highlighted
with solid dark lines. The frequencies of these modes are based on information reported by



Figure 12. Model comparison and validation algorithm.
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ITHACO Space Systems [15]. The coe$cient curve "t plot for the fundamental harmonic
shows a disturbance ampli"cation around 2000 r.p.m. This ampli"cation is also visible in
the waterfall plot at the same wheel speed. Note that the ampli"cation occurs at the point
where the harmonic crosses the negative whirl of the rocking mode. This observation
suggests that the disturbance ampli"cation is due to the excitation of the radial rocking
mode by the "rst harmonic. The sources of the other ampli"cations are determined in this
manner and are listed in Table 2. In some cases the ampli"cation source is listed as
&&unknown''. These harmonics show disturbance ampli"cations at high wheel speeds and
frequencies that do not correspond to either of the radial modes. The source of disturbance
ampli"cation is unclear in these cases.

4.4. MODEL VALIDATION: COMPARING TO DATA

Model validation is achieved through comparison of the empirical model to the
experimental data. A block diagram representation of the comparison algorithm is shown
in Figure 12. The inputs include the vectors of model parameters, h and C, and the data set
components, S, A, f, X and f

Lim
. The outputs are a series of plots and vectors of length

m containing the RMS of the model, p
mod

, and the data, p
data

, at each of the wheel speeds.
The empirical model is created using the harmonic numbers, amplitude coe$cients and

X. Recall from equation (1) that the forces and torques are modelled as discrete harmonic
disturbances at frequencies dependent upon h

i
and with amplitudes proportional to the

wheel speed squared. The disturbance frequencies for a given wheel speed, uN
j
, are

determined by

u6
j
"hX

j
. (10)

The vector u6
j
is a vector of discrete disturbance frequencies for the jth wheel speed and is

the same length as h. Similarly, vectors of disturbance amplitudes, A
modj

, corresponding to



REACTION WHEEL DISTURBANCE MODELS 593
u6
j

are created based on the assumption that the disturbance amplitude from the ith
harmonic at the jth wheel speed is

A
modij

"C
i
X2

j
. (11)

The matrices A
mod

and u6 , which are analogous to the experimental quantities A and f, are
used to generate model/data comparison plots.

In addition, the PSD of the model, S
modj

, is calculated for comparison to the experimental
data. An expression for the model PSD as a function of frequency and wheel speed is
derived from the de"nition of the autocorrelation, R

X
(q):

R
X
(q)"R

X
(t, t#q)"E[X(t)X (t#q)]. (12)

Substituting m(t) (equation (1)) for X(t) in equation (12) and assuming that a
i
is a random

variable uniformly distributed between 0 and 2n and that a
i

and a
j

are statistically
independent, the expression for the autocorrelation of the empirical model becomes

R
m
(q)"

n
+
i/1

C2
i
X4

j
2

cos (X
j
h
i
q). (13)

The mean square of a random process is equal to its autocorrelation evaluated at q"0.
Therefore, assuming that m(t) is both stationary and zero mean, the variance of the
empirical model is

p2
modj

"R
m
(0)"

n
+
i/1

C2
i
X4

j
2

. (14)

Equations (13) and (14) are then used to derive the spectral density function of the
empirical model. The autocorrelation function of a single harmonic process and its
corresponding spectral density are given in reference [20] as

RX (q)"p2x cos (u
0
q), (15)

Sx(u)"p2x C
1

2
d(u#u

0
)#

1

2
d (u!u

0
)D . (16)

Substituting equation (14) into equation (12) and setting h
i
X

j
"u

0
results in an

autocorrelation of the same form as that in equation (15). Therefore, the PSD of the
empirical model is of the same from as that in equation (16). After making the necessary
substitutions the one-sided PSD of the empirical model, S

modj
(u), is

S
modj

(u)"
n
+
i/1

C2
i
X4

j
2

d (u!u6
j
). (17)

Note that the empirical model PSD consists of a series of discrete impulses occurring at
frequencies, u6

j
, with amplitudes equal to the variances of the harmonics, p2

modij
. The vectors

[p2
mod12

p2
modm

], which are outputs of the &&model PSD'' block in Figure 12, consist of the
PSD amplitudes for the discrete harmonics at all m wheel speeds. The matrix of these
vectors, p2

mod
is analogous to S and is used for model/data comparison.

The RMS values of the model and data are calculated for each wheel speed. The area
under the PSD of a random process is equal to the mean square. Therefore, the data RMS
for a given wheel speed, p

dataj
, is simply the square root of the area under the PSD, S

j
.



Figure 13. Waterfall comparison of radial force model and ITHACO E-type wheel data. (a) F
x
data; (b) F

y
data;

**, data; s, model.
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A MATLAB function is used to perform the integration across frequency and obtain this
value for each wheel speed. The RMS of the model is calculated using the assumption that
the random process m(t) is stationary and zero mean. The RMS of a zero mean process is
simply the square root of its variance:

p
modj

"S
n
+
i/1

C2
i
X4

j
2

. (18)

The vectors of RMS values, p
mod

and p
data

are used to compare the model and the data to
assess model validity.

Three types of plots are generated by the model validation function. The "rst is a waterfall
plot that overlays the model PSDs and the data PSDs as shown in Figure 13. In this "gure,
the ITHACO Space Systems E-type wheel data PSDs are plotted as continuous lines and
the radial force empirical model PSDs are represented with circles. It is important to note
that the units of amplitude (z-axis) for the data and model are not equivalent. The data
PSDs are continuous over frequency and have amplitudes with units of N2/Hz, but the
model PSDs consist of series of discrete impulses with amplitudes which have units of N2

and are equal to the variance, or the area under the corresponding peak in the continuous
PSD, of the harmonic disturbance. Therefore this type of plot should not be used to validate
the amplitude coe$cients of the model. Instead, the waterfall plot is useful for validating the
harmonic numbers.

Note that both the F
x

and F
y

waterfall plots show good correlation between the
disturbance frequencies of the data and the model indicating that the harmonic numbers are



Figure 14. PSD comparison of radial force model to F
x
data (ITHACO E-type wheel) with cumulative r.m.s. at

1800 r.p.m.: **, data, r.m.s."0)12; - - - /s, model, r.m.s."0)107.

REACTION WHEEL DISTURBANCE MODELS 595
captured accurately. The diagonal lines of circles lie on top of the diagonal ridges seen in the
data. During the "rst iterations of the modelling process such plots are extremely useful for
"nding harmonics which may have been missed or erroneously identi"ed. It does appear
that there may be some higher harmonics that are not included in the model (due to large
uncertainty in the amplitude coe$cients), but the most signi"cant disturbances are
captured.

The second type of plot generated is shown in Figure 14. The lower plot compares the
amplitude spectra of the data and model for one wheel speed (1800 r.p.m. in this example).
The continuous curve is the data amplitude spectrum, and the discrete impulses, marked
with circles, are the radial force model amplitudes. In this form, both data and model
amplitudes have the same units and can be compared directly, allowing validation of the
amplitude coe$cients. Note that the amplitude of the "rst harmonic, which is the
fundamental, matches the amplitude of the data quite well. The comparison of the higher
harmonics, on the other hand, is not as good. This discrepancy is most likely due to the
assumption that the disturbance force is proportional to the wheel speed squared
(equation (6)). As mentioned earlier, this assumption is valid for the fundamental harmonic
but begins to break down with the higher harmonics.

The cumulative r.m.s. curves, which represent the r.m.s. as a function of frequency, for
both the model and the data, are plotted above the amplitude spectra. These curves o!er
a second method of validating the amplitude coe$cients. Ideally, the model r.m.s. will be
close to the data r.m.s. and the contributions to the r.m.s. from the harmonics will be
comparable. In this example, the "rst harmonic is the largest contributor to the r.m.s. in
both the data and the model and its amplitude is captured in the model quite accurately.
However, the overall model r.m.s. under-predicts the data r.m.s. by 11%. The cumulative
r.m.s. curve indicates that the discrepancy is due to high-frequency energy in the data that is
not captured in the model. The missing energy can most likely be attributed to harmonics
that are not included in the model due to low-con"dence amplitude coe$cient curve "ts.
These results indicate that overall, the empirical model captures the harmonic RWA
disturbances reasonably well at this particular wheel speed.



Figure 15. r.m.s. comparison of empirical model and ITHACO E-type wheel data: radial forces: #, F
x
data; *,

F
y
data; s, radial model.
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The third type of model/data comparison used for model validation is shown in Figure
15. In this plot, the r.m.s. values of the data and the model are plotted as a function of wheel
speed. In e!ect, the plot is simply an integration of the waterfall plot across frequency. The
solid curves, marked with &&#'' and &&*'' are the r.m.s. values for the F

x
and F

y
data,

respectively, and are quite similar, as is expected. The "gure shows that over most wheel
speeds the model under-predicts the data slightly, but not by a signi"cant amount.
However, there is a large amount of energy in the data between 1800 and 2000 r.p.m. that is
not captured in the model. Referring to Table 2, note that both the "rst and third harmonics
excite the structural rocking mode of the wheel in this speed range. Therefore, a discrepancy
between the data and the model in this range exists because the empirical model does not
account for the structural modes of the wheel. The smaller peaks in the data r.m.s. between
800 and 1200 r.p.m. can also be attributed to the structural wheel modes by similar
reasoning.

5. CONCLUSIONS

A set of MATLAB functions has been created to extend the HST model and facilitate the
empirical modelling process. The toolbox extracts empirical model parameters from steady
state RWA vibration data allowing the creation of an empirical disturbance model for any
given RWA assuming that the wheel disturbances are a series of harmonics at discrete
frequencies with amplitudes proportional to the wheel speed squared. The toolbox takes
advantage of data analysis techniques to allow the user to quickly create disturbance
models for a number of RWA. These models can be used in a disturbance analysis
framework to conduct trade studies on di!erent types of RWA, enabling the engineer to
select the wheel that is best suited for a given application.

Steady state vibration data from an ITHACO Space Systems E-type wheel were used as
an example to illustrate the capability of the toolbox and to validate the model. Waterfall
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plots and r.m.s. comparison plots were used to compare the model to the data allowing an
assessment of the accuracy of the empirical model and the performance of the toolbox. The
data correlation for the ITHACO Space Systems E-type wheel model is quite good over
most wheel speeds. The waterfall plot comparison indicates that the disturbance frequencies
are identi"ed accurately; the harmonic numbers in the model are also visible in the data.
The amplitudes of the disturbances also seem reasonable since the r.m.s. values of the data
and model are close over the wheel speed ranges that do not include disturbance
ampli"cations. For example, at 1800 r.p.m. the model r.m.s. is 0)107 and the data r.m.s. is
0)12, an error of only 11%. Over all wheel speeds between 56 and 2400 r.p.m. the model
under-predicts the data by an average error of 20%; the model disturbance amplitudes are
within a factor of two of the data.

The under-prediction of the ITHACO Space Systems E-type wheel model is most
pronounced over discrete ranges of speeds that show signi"cant disturbance ampli"cations
in the data that are not matched by the model. These peaks in r.m.s. result when the
structural wheel modes are excited by the harmonic disturbances. Such a peak is visible in
the E Wheel r.m.s. plot at about 1900 r.p.m. The data r.m.s. at this wheel speed is 0)52N and
the model r.m.s. is only 0)117N. At this wheel speed the model under-predicts the data by
77%. Such large discrepancies exist in the a!ected wheel speed ranges because the internal
wheel #exibility is not captured in the empirical model. The overall r.m.s. error of 20% is
driven by these disturbance ampli"cations.

It is concluded that although the empirical model captures the wheel harmonics and
identi"es the disturbance frequencies well, it alone is not an accurate RWA disturbance
model. Excitation of the structural wheel modes by the harmonics can cause large
disturbance ampli"cations that must be included in the model to accurately predict the
e!ects of the disturbances on the spacecraft during operation. An analytical disturbance
model has been developed to take the resonant e!ects into account and is the subject of
a future publication. It is a combination of the analytical and empirical models that does the
best job of capturing the RWA disturbance environment. Therefore, the empirical model
and parameter extraction methodology is a major component of an accurate RWA
disturbance model.

The MATLAB toolbox described in this paper can be applied to steady state
micro-vibration data from any reaction wheel to provide the harmonic numbers and
amplitude coe$cients that are necessary components of the complete disturbance model for
a given RWA. In this way, the toolbox generalizes the empirical modelling process for
application to any mission in which structural dynamics and control play a key role in
meeting performance requirements.
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